MRI MORPHOLOGICAL AND QUANTITATIVE EVALUATION OF KNEE ALLOGRAFT REPAIR AT 3, 6 AND 9 MONTHS POST-OP: EARLY SURVEILLANCE DEMONSTRATES NASCENT PHYSIOLOGICAL INCORPORATION OF ALLOGRAFT MATERIAL IN PAIN FREE PATIENTS

J. Farber1,2, B. Holladay1, E. Brandser1, E. Schreyer2, S. Totterman2, J. Tamez-Peña2,3
1Commonwealth Orthopaedics, Cincinnati, OH, USA, 2Qmetrics Technologies, Rochester, NY, USA, 3Escuela de Medicina, Tec de Monterrey, México

INTRODUCTION: Accurate, non-invasive visualization of post-operative knee cartilage repair can be obtained using standard clinical MRI studies, enhancing post-operative evaluation of cartilage defect repair.

PURPOSE: To: 1) Morphologically and quantitatively characterize the appearance/incorporation of allograft in patients who are status-post knee articular cartilage (AC) repair; 2) Compare MRI findings with patient clinical status.

METHODS: Patients undergoing knee AC allograft (Biocartilage) procedures at our institution receive follow-up MRIs Q three months. All patients are scanned at 1.5 T (450W, GE) with a dedicated 8 channel knee coil. Morphological sequences include sagittal 2D PD FSFE, 3D PD F5 FSE and coronal FSEIR. Quantitative sequences include multi-echo T2 Mapping. In addition, the 3D PD F5 FSE sequences are segmented (Qmetrics), and 3D thickness maps are rendered from the segmented data sets. The morphological images are assessed for allograft fill, bony edema, osteophyte formation and the stability and integrity of the adjacent AC. The quantitative data sets are evaluated to assess the degree on allograft incorporation, specifically to determine the extent to which the allograft material has T2 and thickness map values similar or not to the native cartilage. These results are then correlated with each patient’s pain score and function. Thus far, eight patients have had nine month follow-up MRIs.

RESULTS: Thus far, all patients’ allografts (N=8) show good fill morphologically at 3 months; the T2 Map values of the allografts at 3 months all have higher values relative to the native cartilage — even if the adjacent native cartilage is diseased — which indicates lower collagen and matrix organization. At three months, the thickness maps demonstrate good allograft fill. All patients thus far studied have improved pain scores and function relative to their pre-operative status. At 6 months, the morphological and thickness map data show improved allograft fill, with smoothing of the articular cartilage contours. The T2 map data of all patients indicate mild shortening of the values, especially at the scaffolding edges and the deepest layers, which suggests early organization of the allograft. Thus far, no patient studied at 6 months has worsened pain or clinical scores relative to the pre-operative and 3 month time points. At the 9 month time point, seven patients (N=7) have stable or improved morphological and thickness map data, as well as further decreasing T2 values; the zones of T2 shortening in these patients have broadened. One patient (N=1) at nine months had second look surgery because of a recurrent ACL tear (Fig 1). This patient’s allograft looked robust at surgery and consistent with the MRI qualitative and quantitative data (Fig 1). All patients at nine months have either stable or improved pain and function scores.

CONCLUSIONS: Initial results indicate that MRI morphological and quantitative data can be used to monitor patients who are post-allograft repair. Obviously, more longitudinal data are needed to verify the utility of MRI as a biomarker for allograft repair success or failure. Future work will include fusing thickness map and T2 data, to display optimally quantitative data in clinically useful renderings (Fig. 2).


Figure 1: Top left image is of a patient with a discrete AC defect of the medial femoral condyle; top middle, right image are the same patient at 6 and 9 months post allograft repair; the image shows material fill in the prior defect. Bottom left is a T2 Map of the same patient, also 9 months post-op. The T2 Map demonstrates progressive AC incorporation and organization. Bottom right is an arthroscopic view obtained during second look surgery at 9 months post-op.

Figure 2: T2 data is fused to 3D thickness map derived from automated segmentation to generate a 3D T2 Map. Courtesy: Jose Tamez-Pena